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The simplest null hypothesis for evolutionary time series is that the
observed data follow a random walk. We examined whether
aspects of Sepkoski’s compilation of marine generic diversity
depart from a random walk by using statistical tests from econo-
metrics. Throughout most of the Phanerozoic, the random-walk
null hypothesis is not rejected for marine diversity, accumulated
origination or accumulated extinction, suggesting that either these
variables were correlated with environmental variables that follow
a random walk or so many mechanisms were affecting these
variables, in different ways, that the resultant trends appear
random. The only deviation from this pattern involves rejection of
the null hypothesis for roughly the last 75 million years for the
diversity and accumulated origination time series.

I t is impossible to reject the null hypothesis that throughout
much of the Phanerozoic [the last 540 million years (Myr)],

marine diversity, accumulated origination, and accumulated
extinction (Fig. 1) conform to a random-walk model. The only
departure from this general pattern involves the diversity and
accumulated origination time series, which do not conform to a
random walk for roughly the last 50–75 Myr (Figs. 2 A and B).
These deviations are probably not related to sampling issues or
the pull of the recent. Instead, they may reflect real changes in
the biota that occurred in the late Mesozoic and Cenozoic.

The overall result is perhaps surprising, because the analysis
of Phanerozoic diversity, origination, and extinction curves has
revealed a variety of interesting events, patterns, and trends.
Examples include the Cambrian and Ordovician radiations, the
big five mass extinctions, and a diversity plateau in the mid-
Paleozoic (1–6). Moreover, coincident with recognition of these
patterns, paleontologists have ascribed a series of processes to
explain individual events and trends (5, 7–15). It is instructive to
compare the reality of these patterns with some underlying null
model of random patterns in the history of life, because apparent
trends through time or even sudden shifts in time series can
result just from random fluctuations (16–21). For time series
data like the Phanerozoic diversity, accumulated origination and
extinction curves for marine fossil taxa the random walk is the
simplest possible null hypothesis (17).

Although our results may not obviate the need to invoke
complex mechanisms to explain these apparent trends, caution
needs to be exercised when looking for trends in these time
series. Furthermore, the randomness that we see may not be
intrinsic biotic randomness but might be driven by extrinsic
environmental randomness. There is, for example, a significant
correlation between marine fractional origination rates and
estimates (22) of Phanerozoic atmospheric carbon dioxide levels
(23). The CO2 time series also exhibits random walk character
during 545–570 million years ago (mya) and nonrandom walk
character when data from the last 70 Myr is included (see
Supporting Text and Figs. 3–5, which are published as supporting
information on the PNAS web site), but, with only 58 data points,
this result requires further investigation.

Sepkoski and coworkers’ (6, 24) compilation of marine generic
diversity forms the template for the data and statistical tests to
determine whether the time series depart from a random walk
derive from econometrics (25–30). It has been argued that the
nature of the biased fossil record can make it hard to quantify
paleontological diversity at any one point in time and also track

changes in diversity through time (11, 31–36). It is becoming
increasingly apparent, however, that the magnitude and shape of
the Phanerozoic biodiversity curve compiled by Sepkoski and
coworkers (6, 10, 37) represents a reasonable approximation of
animal diversity through time (38–48).

Primary Data and Analytic Methods
Graphs of the marine genera database assembled by Sepkoski
and coworkers (6, 24) including generic diversity, origination,
and extinction are shown in Fig. 1. The Phanerozoic is parti-
tioned into 108 stages and substages, and recorded for each
(sub)stage, [ti, ti�1] (Myr) are Gi, the total number of genera that
appeared at some time during [ti, ti�1]; Oi, the number of genera
that first appeared in [ti, ti�1]; and Ei, the number of genera that
last appeared in [ti, ti�1]. The sequences {Gi}, {Oi), and {Ei} are
related by

Gi�1 � Gi � Ei � Oi�1 i � 1, . . . , 107. [1]

Summation of this equation leads to

Gn � G1 � �
i�2

n

Oi � �
i�1

n�1

Ei.

Autoregressive models of time series of order p are of the form

yt � �0 � �1yt�1 � · · · � �pyt�p � �t,

where �0, . . . , �p are constants and {�t}t�1
N is a sequence of

random variables. Given N observations, {yt}t�1
N , an autoregres-

sive model may be fit to the data by estimating the coefficients
�0, . . . , �p by using least-squares regression. When {�t} are
independent and identically distributed random variables of
mean zero and finite variance a model of the form yt � �t is said
to be white noise and a model of the form Yt � Yt�1 � �t is said to
be a random walk. The accumulation, Ayt � �t�1

t yi, of
white noise {yt}t�1

n is a random walk, and the first difference,
Yt � Yt�1, of a random walk {Yt}t�1

n is white noise. A good test
of whether a series {yt}t�1

n is white noise is to test whether the
accumulated series {Ayt}t�1

n is a random walk. A model of the
form

yt � a0 � a1t � yt�1 � �t [2]

is a random walk with linear drift, a0 � a1t, if a1 � 0, and a
random walk with constant drift if a1 � 0 and a0 � 0. We model
some of the macroevolutionary series as a random walk with
constant drift, yt � a0 � yt�1 � �t, where a0 � 0. In this case,
the first difference is yt � yt�1 � a0 � �t and we call this white
noise with nonzero mean (a0).

Initial investigation of time series data includes examination of
plots of the data, plots of first differences of the data, and plots
of the autocorrelation and the partial autocorrelation functions.

Abbreviations: mya, million years ago; Myr, million years.
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Formulas for these functions and their 5% significance levels
appear in Supporting Text.

Autocorrelations, r�, of the macroevolutionary data shown in
Fig. 1 are given in panels below the data graphs. The (sub)stages
of the data average 5.1 Myr, so that lags 1–20 cover �5–100 Myr.
The basic question about autocorrelations for a given time series
is whether for some lag, � � 0, r� is significantly different from
zero. The 5% significance levels are shown as dashed lines in Fig.
1. In Fig. 1D, none of the autocorrelations of the first difference
of the diversity data are significantly different from zero; auto-
correlation functions of white noise and white noise with positive
mean are zero at every lag. This finding suggests that the first
difference of diversity may be white noise or white noise with
positive mean and that diversity may be a random walk. The
autocorrelation function of accumulated origination (Fig. 1B) is
significantly different from zero at lags 1, 2, 3, and 5, suggesting
some structure to this data and that accumulated origination, at
least for the entire Phanerozoic, may not be a random walk. The
lag-5 autocorrelation of extinction (Fig. 1C) is 0.2271 and
exceeds the 5% significance level of 0.2065, pointing to a
previously described 26 Myr extinction periodicity (3, 24). How-
ever, the 103 summands in the autocorrelation are dominated by
the single-end Cretaceous 0.0814 summand [for (sub)stages 91
and 96]; without this term the lag-5 autocorrelation would not be

significantly different from zero. The summands for (sub)stages
86 and 91 and for 96 and 101 are both negative and do not
support the strong five-step correlation for 91 and 96. Stage 96
is the end-Cretaceous Maastrichtian in which extinction was 5.8
SD above average extinction; this singular event combined with
a 1.5 SD above average extinction in (sub)stage 91 accounts for
the 0.0814 summand.

The partial autocorrelation functions for the macroevolution-
ary data are shown with the autocorrelation functions in Fig. 1.
None of the partial autocorrelations of diversity, accumulated
origination, or accumulated extinction beyond the lag-1 partial
autocorrelations are significantly different from zero. This result
suggests that we may model these data with first-order autore-
gressive models of the form in Eq. 2.

We have modeled the marine macroevolution data with
equations of the form

yt � �yt�1 � �t [3]

yt � a0 � �a yt�1 � �t [4]

yt � b0 � b1�t � n�2	 � �b yt�1 � �t, [5]

where �, a0, �a, b0, b1, and �b are constants and �t is a random
variable with mean zero and variance �t

2. These models were

Fig. 1. Graphs of marine data and their autocorrelation and partial autocorrelation functions. The plots shown in A, B, and C are of {(ti,Gi)}i�1
108, {(ti,Oi)}i�1

108, and
{(ti,Ei)}i�1

108, respectively. A graph of the first difference of {Gi}i�1
108, {ti,Gi�1 � Gi}i�1

107, is shown in D. The graphs of accumulated origination, (tn,�i�2
n Oi), and accumulated

extinction, (tn,�i�1
n�1 Ei), are shown in E and F, respectively. Autocorrelations (● ) and partial autocorrelations (�) of the time series are shown below the data. Each

unit of lag is one (sub)stage and averages 5.1 Myr. The total range of the lags is �100 Myr. In A, E, and F, none of the partial autocorrelations for lag greater
than one are significantly different from zero, suggesting that first-order autoregressive models are appropriate for the corresponding time series. The
autocorrelations for D, the first difference of diversity, are not significantly different from zero for any positive lag; thus, the first difference of diversity may
be white noise.
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analyzed by Fuller (25) and Dickey and Fuller (26, 27) by using
the assumption that {�t} is a sequence of independent normal
random variables with mean zero and constant variance �2.
Phillips (28) and Phillips and Perron (29) extended that analysis
using a greatly relaxed assumption about {�t} that did not require
normality and allowed a weak dependence between the members
of {�t} and slowly changing variance �t

2. D. A. Dickey (personal
communication) has suggested that we use a model in deviation
form, yt � ft � �(yt�1 � ft�1) � �t, where ft is either 0, a0, or b0
� b1(t � n�2) and that in this form the case � � 1 would lead
to use of ft � b0 � b1(t � n�2). We draw the same conclusions
with both forms and because the original development and most
subsequent work is based on Eqs. 3–5, we report here results
using Eqs. 3–5. We report results using the deviation form in
Supporting Text and Fig. 6, which is published as supporting
information on the PNAS web site.

Parameter Estimation and Significance of Parameter Estimates
For a given set of macroevolutionary data, y1, y2, . . . , yn, the
parameters of Eqs. 3–5 are estimated by linear regression.
Equations defining these estimates are included in Supporting
Text. Which of the models Eqs. 3–5 are to use revolves first

around the question of whether b̂1 is significantly different from
zero. If so, use Eq. 5. Otherwise, move to Eq. 4 and test whether
â0 is significantly different from zero. If so, use Eq. 4. If â0 is not
significantly different from zero, use Eq. 3. Regression t statistics
for the conditions â0 � 0, b̂0 � 0, and b̂1 � 0 are

tx̂ � x̂�Se,x, [6]

where x is a0, b0, or b1 and Se,x is the regression SE of x.
Whether the original time series is a random walk revolves

around the question of whether � � 1, �a � 1, or �b � 1,
depending on which of Eqs. 3–5 has been selected. Regression
t statistics for these hypotheses are

tx̂ � �x̂ � 1	�Se,x, [7]

where x is �, �a, or �b and Se,x is the regression SE of x.
Dickey and Fuller (26, 27) examined the t statistics in Eqs. 6

and 7 for testing the significance of the parameters estimated by
the previous regressions. Assuming that the innovations {�t} are
normal, independent, and of constant variance �2, Dickey and
Fuller (26) analytically found limiting distributions of the tx̂ for
increasing sequence length, and they found, by Monte Carlo
simulation, distributions of the tx̂ for sequences of finite length.
The empirical distributions of the statistics in each case of Eq.
6 is larger than that of Student’s t distribution. For time series of
length 100, they found the 10% confidence thresholds of �tâ0

�, �tb̂0
�,

and �tb̂1
� to be 2.17, 2.73, and 2.38, respectively. In contrast, the

Student’s t distribution threshold is 1.66. Our time series are of
length 90 or 108, and we use the thresholds for series of length
100 just noted to select among Eqs. 3–5. Fuller (Table 8.5.2 in ref.
25) reported distributions of the statistics given in Eq. 7, also
determined by Monte Carlo modeling. We have used the fifth
and ninety-fifth percentiles for sequences of length 100 from
that table for testing the t statistics; the thresholds appear in
Tables 1–3.

Modifications by Phillips and Perron
Phillips (28) and Phillips and Perron (29) greatly relaxed this
assumption about {�t} � normality was not required and they
allowed a weak dependence between the members of {�t} and
slowly changing variance �t

2. They defined a modified t statistic,
Z(tx̂), which has the same limiting distribution as tx̂. For the
macroevolutionary data the Z(tx̂) differ somewhat from tx̂, and
because the Phillips and Peron (29) analysis allows more general

Fig. 2. (A) Graphs of Z(t�̂) for fit of Eq. 3, yt � � yt�1 � �t, to windows of width
90 within total marine diversity (Fig. 1A), and of Z(t�̂a) for fit of Eq. 4, yt � a0

� �ayt�1 � �t (B), to windows of width 90 within total accumulated origi-
nation (Fig. 1E) and (C) within total accumulated extinction (Fig. 1F). The time
associated with each data point is the time of the 90th (sub)stage included in
the window. The Lower and Upper horizontal lines mark the 5th percentile
and 95th percentile thresholds for the t statistics. In A and B the t statistic
exceeds the 95% threshold and the random-walk hypothesis is rejected only
for windows ending in approximately the last 75 Myr. In C the random-walk
hypothesis is not rejected for any window.

Table 1. Results of fitting Eq. 5 to marine diversity, accumulated
originations, and accumulated extinctions in the linear-drift
model

b̂0 b̂1 �̂b Z(tb̂0) Z(tb̂1)

Diversity 34.48 1.16 1.0131 1.38 0.62
Accumulated originations �371.0 �11.78 1.0451 �1.83 0.06
Accumulated extinctions 912.4 13.19 0.9572 0.69 2.15
90% thresholds 2.73 2.38

Table 2. Results of fitting Eq. 4 to marine diversity, accumulated
originations, and accumulated extinctions in the constant-drift
model

â0 �̂a Z(tâ0) Z(t�̂a)

Diversity �2.49 1.0387 �0.65
Accumulated originations 216.92 1.0077 3.62 2.18
Accumulated extinctions 252.46 1.0025 5.10 0.80
5%, 95% thresholds �2.89, �0.05
90% threshold 2.17
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innovations {�t}, we have chosen to use the modified t statistics,
Z(tx̂). Because the limiting distributions are the same, the
distributional thresholds found by Dickey and Fuller (26) tx̂ have
been used with Z(tx̂) to evaluate the significance of x̂. The
equations for computing Z(tx̂) appear in Phillips (28) and Phillips
and Perron (29) and are summarized in Supporting Text.

Results
We first analyze the time series over the complete Phanerozoic.
Because diversity sharply increases beginning �100 mya (Fig. 1A),
we also analyze 90 (sub)stage windows of the series. Each window
spans �450 Myr. Window 1 consists of (sub)stages 1–90 and
precedes the sharp increase in diversity, window 2 consists of
(sub)stages 2–91, and window 19 consists of (sub)stages 19–108.

The modified t statistics, Z(tx̂), for estimates of the parameters of
Eqs. 3–5 fit to diversity, accumulated origination and accumulated
extinction time series are shown in Tables 1–3. In Table 1, Z(tb̂1

) is
0.62, 0.06, and 2.15 for diversity, accumulated origination, and
accumulated extinction, respectively. Because the 90% threshold is
2.38, the null hypothesis, H0: b1 � 0, is not rejected for either of the
three series, and a linear-drift model is not appropriate.

In Table 2, the values of Z(tâ0
) for accumulated origination

(3.62) and accumulated extinction (5.10) exceed the 90% thresh-
old (2.17) for this t statistic, implying that the constant-drift
model may be accepted for these series. The values of Z(t�̂a

) in
Table 2 for accumulated origination (2.18) and accumulated
extinction (0.80) series are greater than the 95% threshold of
�0.05, and for both series the null hypothesis that the series is
a random walk is rejected. The value of Z(tâ0

) for diversity
(�0.65) is in magnitude less than the 90% threshold (2.17) for
this t statistic, and a linear-drift model may not be appropriate
for diversity.

Turning to the no-drift model for diversity (Table 3) we
observe that Z(t�̂) � 3.80 exceeds the 95% threshold of 1.29. The
null hypothesis that generic diversity is a random walk over the
whole Phanerozoic is rejected.

The models in Eqs. 3–5 assume a uniform time interval. The
Sepkoski and coworkers (6, 24) (sub)stages average 5.1 Myr, but
range from 2.5 to 12.5 Myr in length. There are substantial
statistical problems associated with estimating model parame-
ters of time series with irregularly spaced data (48). To examine
this problem, we selected values for series at 108 uniformly
distributed times over the Phanerozic by using both liner inter-
polation and cubic spline interpolation on the original series; the
random-walk character of the series distributed uniformly in
time is the same as that just reported for the original series.
Furthermore, although there is variation in the lengths of the
time intervals of the (sub)stages, the (sub)stage boundaries are
marked by discrete events in the fossil record. The time lapse
between events is less important than the fact that the events
occurred, and we think of the macroevolutionary series as
progressing from event to event.

Analysis of Windows of the Series. It may not be a surprise at first
glance that the macroevolutionary data examined do not form
random walks. As noted above, however, the autocorrelation
function of the first difference of diversity suggests that it may
be white noise so that diversity may be a random walk. Thus, the
data were examined in more detail.

We applied the analysis represented in Tables 1–3 to 19 time
windows of length 90 (sub)stages, where each window represents
�450 Myr of the Phanerozoic. Windows of length 90 are long
enough to retain some of the statistical significance of the total
data set but allow some adjustments of coefficients to probe
more deeply into the series. Other window sizes are discussed
below. All statistics computed for a window were associated with
the time of the ninetieth entry in the window (the most recent
time of the window).

The no-drift model 3, yt � �yt�1 � �t, accurately describes all
of the windows of the diversity series. (The constant-drift model
is actually specified for the first window, and shows a random
walk, the same as shown by the no-drift model; for all remaining
windows, the constant-drift model is rejected).

Fig. 2A summarizes the results of fitting the no-drift model to
windows of the total diversity data of Fig. 1 A. With one
exception (at �75 mya), the random-walk hypothesis is not
rejected for windows ending before 60 mya, and is rejected for
all of the subsequent windows.

The linear-drift model was fit to windows of the accumulated
origination series. For no window did Z(tb̂1

) exceed the ninety
percentile threshold (data not shown) so we turned to the
constant-drift model. For all windows, Z(tâ0

) exceeded its 90%
threshold value (data not shown) and the constant-drift model
is accepted. The graph of Z(t�̂a

) shown in Fig. 2B exhibits roughly
the same pattern as found for the diversity data. For windows
terminating before 75 mya, the random-walk hypothesis is not
rejected; for windows terminating after 75 mya, the random-walk
hypothesis is rejected.

As with accumulated origination, for every window of accu-
mulated extinction, the linear-drift model is not accepted and the
constant-drift model is accepted (data not shown). In a depar-
ture from the previous pattern, accumulated extinction is a
random walk for all windows (Fig. 2C). Because accumulated
extinction is a random walk, extinction is white noise with
positive mean within each of those windows that progressively
cover the whole Phanerozoic.

Windows of widths other than 90 were also considered.
Windows of length 100 all lap into the Cenozoic and retain the
random walk character of the total series. For windows of length
90 and 100 the model (Eqs. 3, 4, or 5) used for a window was the
same as the model used for the total series that contains the
window with only one exception, the first window of length 90 of
the diversity series. With windows of length 80, basically the same
conclusion is drawn as that illustrated in Fig. 2 A–C but with a
more complex development. For the diversity time series, for
example, the constant-drift model was appropriate for windows
1–11, 13, 18, and 19, and for each of these windows the
random-walk hypothesis is not rejected; the no-drift model was
appropriate for the remaining windows and the random-walk
hypothesis is rejected only for windows 17 and 20–29. The
random-walk hypothesis is not rejected for any window ending
before 75 mya and is rejected for all windows ending after 60
mya, which is similar to Fig. 2 A. The complexity increases and
the statistical significance of the analysis decreases with series
length, and thus we have not used windows of length 70 or less.

Cointegration. In the early windows, both accumulated origina-
tion and accumulated extinction are random walks: the null
hypothesis that � � 1 is not rejected and they are called ‘‘unit
root’’ processes. Origination and extinction are significantly
correlated (correlation � 0.61), and the question arises as to
whether accumulated origination and accumulated extinction
are cointegrated. Time series xn and yn are cointegrated if each
is a unit root process and there is a linear combination a xn �
b yn for which all roots are less than one in magnitude (30). We
have concluded that xn � �i�1

n Oi and yn � �i�1
n Ei are not

cointegrated. Only in the first six windows are both xn and yn unit

Table 3. Results of fitting Eq. 3 to marine diversity in the
no-drift model

�̂ Z(t�̂)

Diversity 1.0375 3.80
5%, 95% thresholds �1.95, 1.29
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root processes. For each of those windows we analyzed xn � a yn
and a xn � yn for �1 � a �1 in 0.01 increments of a and using
all three models (Eqs. 3–5). In no case was the estimate of �
significantly 
1. We furthermore examined the autocorrelation
and partial autocorrelation functions for a sample of these linear
combinations to ensure that a first-order autoregressive model
was appropriate.

Disscussion and Conclusions
These analyses provide evidence that for much of its history the
diversity of animal life and also the total amount of macroevo-
lutionary origination and extinction follow a random walk. This
conclusion does not necessarily entail that the trends previously
identified in these series are actually random fluctuations in
drifting systems. Instead, what may be occurring is that so many
mechanisms are affecting these series in different ways and at
different times that they effectively behave randomly. Another
possibility is that these series are themselves being influenced by
one or more environmental variables that in turn are after a
random walk. The primary deviation from the overall pattern of
a random walk involves the latest Mesozoic and Cenozoic parts
of the diversity and origination series, although, interestingly, not
the extinction series. Diversity and rates of origination actually
seem to climb higher than random expectations in roughly the
last 75 Myr. New findings by Jablonski et al. (50) suggest this
result is likely not attributable to the pull of the recent. Some
have argued (31, 36) that the apparent increase in accumulated
origination and diversity in the fossil record could be due to
sampling effects related to the improving quality of the fossil
record through time, rather than true biological changes. Al-
though this is possible, a variety of geological and paleontolog-
ical studies (38–40, 42, 48, 51) suggest that this is not the case and
instead speak to real biotic changes in the last �75 mya.

It is interesting that the extinction data do not conform to this
pattern and still appear to match a random walk pattern even for
the last 75 Myr. The different results for the accumulated origina-
tion and diversity time series relative to the accumulated extinction
series may be related to the patterns Gilinsky and Bambach (52)
documented: origination rates vary systematically through the life
spans of most taxa, whereas extinction does not trend up or down.
Related patterns identified by Raup and Sepkoski (53) and Gilinsky
(54) may also be responsible. Kirchner and Weil (55) also found that
the autocorrelations of extinction were no greater than would be
found in a random series, which supports the null hypothesis that
fluctuations in extinction rates are largely random or more abrupt
than the time scale of the data; in addition, Kirchner (56) found that
origination and extinction seem to operate on different character-
istic time scales. The results about the random nature of accumu-
lated origination and extinction through time suggest that origina-
tion and extinction may behave as white noise, although we have
some evidence for periodicity in the record of extinction, matching
the results from Raup and Sepkoski (3) and Plotnick and Sepkoski
(24). However, the evidence for periodicity is primarily governed by
the end-Cretaceous event, because it is so large. If this extinction
event is not included, the evidence for cyclicity is no longer
statistically significant, although it still bears mentioning.

We thank the innumerable scientists whose work contributed to the data
shown, and specifically J. John Sepkoski, Jr., for his work on the marine
fossil record, and Richard K. Bambach, David A. Dickey, Mike Foote,
Wayne A. Fuller, Roger Kaesler, Jim Kirchner, Peter C. B. Phillips, and
an anonymous reviewer for helpful discussions about the work or
comments on an earlier version of this paper. This work was supported
by the Department of Geology and the Self Fellowship of the University
of Kansas and by the National Science Foundation.
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